Infinite log-concavity: Developments and conjectures
نویسندگان
چکیده
منابع مشابه
Infinite log-concavity: developments and conjectures
Given a sequence (ak) = a0, a1, a2, . . . of real numbers, define a new sequence L(ak) = (bk) where bk = ak − ak−1ak+1. So (ak) is log-concave if and only if (bk) is a nonnegative sequence. Call (ak) infinitely log-concave if L(ak) is nonnegative for all i ≥ 1. Boros and Moll [3] conjectured that the rows of Pascal’s triangle are infinitely log-concave. Using a computer and a stronger version o...
متن کاملLog-concavity and q-Log-convexity Conjectures on the Longest Increasing Subsequences of Permutations
Let Pn,k be the number of permutations π on [n] = {1, 2, . . . , n} such that the length of the longest increasing subsequences of π equals k, and let M2n,k be the number of matchings on [2n] with crossing number k. Define Pn(x) = ∑ k Pn,kx k and M2n(x) = ∑ k M2n,kx . We propose some conjectures on the log-concavity and q-log-convexity of the polynomials Pn(x) and M2n(x).
متن کاملMatroids and log-concavity
We show that f -vectors of matroid complexes of realizable matroids are strictly log-concave. This was conjectured by Mason in 1972. Our proof uses the recent result by Huh and Katz who showed that the coefficients of the characteristic polynomial of a realizable matroid form a log-concave sequence. We also prove a statement on log-concavity of h-vectors which strengthens a result by Brown and ...
متن کاملBell Numbers, Log-concavity, and Log-convexity
Let fb k (n)g 1 n=0 be the Bell numbers of order k. It is proved that the sequence fb k (n)=n!g 1 n=0 is log-concave and the sequence fb k (n)g 1 n=0 is log-convex, or equivalently, the following inequalities hold for all n 0, 1 b k (n + 2)b k (n) b k (n + 1) 2 n + 2 n + 1 : Let f(n)g 1 n=0 be a sequence of positive numbers with (0) = 1. We show that if f(n)g 1 n=0 is log-convex, then (n)(m) (n...
متن کاملLog-Concavity and Symplectic Flows
We prove the logarithmic concavity of the Duistermaat-Heckman measure of an Hamiltonian (n− 2)-dimensional torus action for which there exists an effective commuting symplectic action of a 2-torus with symplectic orbits. Using this, we show that any symplectic (n− 2)-torus action with non-empty fixed point set which satisfies this additional 2-torus condition must be Hamiltonian.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Applied Mathematics
سال: 2010
ISSN: 0196-8858
DOI: 10.1016/j.aam.2009.03.001